DNA binding specificity of the Mu Ner protein.

نویسندگان

  • T E Strzelecka
  • J J Hayes
  • G M Clore
  • A M Gronenborn
چکیده

Binding of purified phage Mu Ner protein to a series of DNA fragments was investigated in order to determine the length requirements for tight specific binding. Gel retardation experiments with wild-type 307 base pair (bp) Mu DNA and shorter, synthetic oligonucleotides were performed, and apparent dissociation constants (KappD) were determined from the half-saturation point. While Ner formed four complexes with the 307 bp DNA fragment, only one complex was observed with the shorter DNAs. The 50 and 30 bp fragments had KappD values of 5 and 20 nM, respectively. Ner binding was progressively weaker with decreasing size of the DNA fragments, with no binding observed for 12mers. The shortest DNA fragments which bound well were two 18 bp fragments for which KappD values were in the range of 50-100 nM. The stoichiometry of Ner complexes with the 30 and 18 bp fragments was determined using a modified Ferguson method. Ner was found to form a tetramer on the 30 bp DNA and a dimer on the 18 bp DNA, which makes the latter a good candidate for the study of a Ner-DNA complex by NMR. In order to clarify which DNA regions were important for Ner-DNA binding, hydroxyl radical footprinting was performed for a range of Ner concentrations from 30 to 500 nM. The footprint revealed that Ner contacts the DNA backbone every 12-13 bp, on both strands of the DNA. The order in which protected regions appeared with increasing protein concentration indicated that two Ner monomers bound to DNA simultaneously. A model of Ner binding to DNA is proposed on the basis of these results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The solution structure of the Mu Ner protein reveals a helix-turn-helix DNA recognition motif.

BACKGROUND The Mu Ner protein is a small (74 amino acids), basic, DNA-binding protein found in phage Mu. It belongs to a class of proteins, the cro and repressor proteins, that regulate the switch from the lysogenic to the lytic state of the phage life cycle. There is no significant sequence identity between Mu Ner and the cro proteins of other phages, despite their functional similarity. In ad...

متن کامل

Purification and characterization of the DNA-binding protein Ner of bacteriophage Mu.

The construction is described of a plasmid (pL-ner) which directs the high-level production of the bacteriophage Mu Ner protein in Escherichia coli. The protein, recovered in the soluble cellular fraction, was susceptible to in vivo proteolytic processing, in many host strains, but not in E. coli B, a natural lon- prototroph. A simple purification method is described which takes advantage of th...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

Determination of the secondary structure of the DNA binding protein Ner from phage Mu using 1H homonuclear and 15N-1H heteronuclear NMR spectroscopy.

The sequential resonance assignment of the 1H and 15N NMR spectra of the DNA binding protein Ner from phage Mu is presented. This is carried out by using a combination of 1H-1H and 1H-15N two-dimensional experiments. The availability of completely labeled 15N protein enabled us to record a variety of relayed heteronuclear multiple quantum coherence experiments, thereby enabling the correlation ...

متن کامل

Pyruvic acid is attached through its central carbon atom to the amino terminus of the recombinant DNA-derived DNA-binding protein Ner of bacteriophage Mu.

Ner protein of bacteriophage Mu, produced by recombinant DNA techniques in Escherichia coli, has been found to possess a molecule of pyruvic acid attached covalently through carbon-2 to the amino-terminal cysteine residue. The intact protein and the amino-terminal chymotryptic peptide were found by mass spectrometry to be 70 mass units heavier than expected. The modified peptide was unstable un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 34 9  شماره 

صفحات  -

تاریخ انتشار 1995